∵AD∥BC,AB=CD,
∴∠ADG=∠CDG,
又∵∠AGD=∠CDG,
∴∠ADG=∠AGD,
∴AD=AG.
同理BF=BC,
∴BF=AG,
即AF=BG;(5分)
(2)∵∠CDG=
1 |
2 |
∠ADC=∠DCF=
1 |
2 |
而∠ADC+∠BCD=180°,
∴∠CDG+∠DCF=90°,
∴∠FEG=∠CED=90°,
即△GEF是直角三角形;(9分)
(3)当平行四边形ABCD是矩形时,△GEF是等腰直角三角形,
∵∠DCF=∠CDG=45°,
∴∠EFG=∠EGF=45°,
∴△GEF是等腰直角三角形.(12分)