> 数学 >
如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G.
(1)求证:AF=BG;
(2)求证:△EFG为直角三角形;
(3)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并说明理由.
人气:479 ℃ 时间:2019-12-16 07:02:32
解答
在平行四边形ABCD中
∵AD∥BC,AB=CD,
∴∠ADG=∠CDG,
又∵∠AGD=∠CDG,
∴∠ADG=∠AGD,
∴AD=AG.
同理BF=BC,
∴BF=AG,
即AF=BG;(5分)
(2)∵∠CDG=
1
2

∠ADC=∠DCF=
1
2
∠BCD,
而∠ADC+∠BCD=180°,
∴∠CDG+∠DCF=90°,
∴∠FEG=∠CED=90°,
即△GEF是直角三角形;(9分)
(3)当平行四边形ABCD是矩形时,△GEF是等腰直角三角形,
∵∠DCF=∠CDG=45°,
∴∠EFG=∠EGF=45°,
∴△GEF是等腰直角三角形.(12分)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版