(2012•牡丹江)抛物线y=ax2+bx+c与x轴的公共点是(-1,0),(3,0),则这条抛物线的对称轴是直线( )
A. 直线x=-1
B. 直线x=0
C. 直线x=1
D. 直线x=3
人气:421 ℃ 时间:2019-08-19 16:17:47
解答
∵抛物线与x轴的交点为(-1,0),(3,0),
∴两交点关于抛物线的对称轴对称,
则此抛物线的对称轴是直线x=
=1.
故选C.
推荐
- (2012•牡丹江)抛物线y=ax2+bx+c与x轴的公共点是(-1,0),(3,0),则这条抛物线的对称轴是直线( ) A.直线x=-1 B.直线x=0 C.直线x=1 D.直线x=3
- (2012•牡丹江)抛物线y=ax2+bx+c与x轴的公共点是(-1,0),(3,0),则这条抛物线的对称轴是直线( ) A.直线x=-1 B.直线x=0 C.直线x=1 D.直线x=3
- 已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与X轴交于A,B两点,与Y轴交于点C,其中A(-3,0),C(0,2)(1)求这条抛物线所对应的函数关系式;(2)一直在对称轴上存在一点P,使得三角形PBC的周长最小,请求出点P的
- 如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为( ) A.0 B.-1 C.1 D.2
- 抛物线y=ax2+bx+c,与x轴交于点A(-3,0),对称轴为x=-1,顶点C到x轴的距离为2,求此抛物线的解析式.
- R2=(7-R)2+52怎么算
- 点A在半径为3的圆O内,OA=根号3,P为圆O上一点,当角OPA取最大值时,求PA的长
- 如果3的m 次方+n 可以被10整除,证明3的m+4次方+也可以被10整除
猜你喜欢