>
数学
>
设N阶矩阵A满足A^2=A,证明E-2A可逆,且(E-2A)^-1=E-2A.求证明过程.
人气:280 ℃ 时间:2020-02-01 00:08:32
解答
证明:
因为 A^2=A
所以 (E-2A)(E-2A) = E-4A+4A^2 = E-4A+4A = E.
所以 E-2A 可逆,且 (E-2A)^-1 = E-2A.
推荐
27.设n阶矩阵A满足A2=A,证明E-2A可逆,且(E-2A)-1=E-2A.
n阶矩阵A满足A^2+2A+3E 证明A+E可逆 并求逆
设A是n阶可逆矩阵,证明(A*)*=|A|^n-2A并求|(A*)*
已知:n阶矩阵A满足A=A平方,证明:E-2A可逆且(E-2A)的负一次方等于E-2A
设A为幂等矩阵,证明:A+E和E-2A是可逆矩阵,并求其逆
设随机变量X的概率密度为f(x) ,Y=-2X+3,则Y的概率密度函数
浓硝酸应盛放在广口瓶吗
在论文中and/or 应该怎么翻译
猜你喜欢
已知AB是园O的直径,弦CD垂直AB,AC=2倍根号2,BC=1,那么sin角ABD=多少=
但连英语短文都读不懂,该怎么办啊?
ps怎么改图像大小
感谢那些日子 作文应该怎么写?初三作文
美是客观存在还是主观感受呢?
将一盏灯L接到某电源上,它的功率为40瓦;如果将该灯和电阻R串联后接到原电路中,则电阻只消耗的电功率为
线偏振光以布儒斯特角入射,反射光是什么偏振状态或者是自然光
英语翻译
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版