> 数学 >
当x,y,z>0时x+2y+3z=1u=x*x/(x+1)+4y*ysup2/(2y+1)+9z*z/(3z+1)的最小值
人气:157 ℃ 时间:2020-08-28 09:59:11
解答
已知x+2y+3z=1,求求u=x²/(x+1)+4y²/(2y+1)+9z²/(3z+1)最小值根据柯西不等式,[x²/(x+1)+4y²/(2y+1)+9z²/(3z+1)]·[(x+1)+(2y+1)+(3z+1)]≥(x+2y+3z)²∴[x²/(x+1)+4y²/(...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版