f(x)=(√3/2)sinx-(1/2)cosx
f(x)=sin(x-π/6)
则函数f(x)的最大值是1,此时:
x-π/6=2kπ+π/2
得:x=2kπ+(2π/3)
则x的取值集合是:{x|x=2kπ+(2π/3),k∈Z}谢谢 不过f(x)=(√3/2)sinx-(1/2)cosx是怎么得来 f(x)=sin(x-π/6)的?这个不是题目给出的吗?f(x)=(√3/2)sinx-(1/2)cosxf(x)=sinxcos(π/6)-cosxsin(π/6)f(x)=sin(x-π/6)