①∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,
∵CD=CE,
∴∠E=∠CDE,
而∠DCB=∠E+∠CDE=60°,
∴∠E=30゜,
∵DA=DC,
∴∠DBC=
1 |
2 |
∴DB=DE;
②∵DF⊥BC,
∴BF=EF;
2)BF=EF仍然成立.理由如下:
![](http://hiphotos.baidu.com/zhidao/pic/item/c8ea15ce36d3d53981da1a413987e950342ab048.jpg)
作DM∥BC交AB于M,如图2,
∵△ABC为等边三角形,
∴∠A=∠ABC=∠ACB=60°,AB=AC,
∴∠DCE=120°,
∵DM∥BC,
∴∠AMD=60°,
∴∠BMD=120°,△AMD为等边三角形,
∴AD=DM=AM,
∵AD=CE,
∴DM=EC,
![](http://hiphotos.baidu.com/zhidao/pic/item/b151f8198618367a300f6a5f2d738bd4b21ce5aa.jpg)
∴AB-AM=AC-AD,
∴MB=DC,
∴△BMD≌△DCE(SAS),
∴BD=DE,
而DF⊥BC,
∴BF=EF;
(3)(2)中的结论仍然成立.理由如下:
如图3,作DM∥BC交AB的延长线于M,
易证△AMD为等边三角形,
∴AM=AD=MD,∠M=60°,
而AB=AC,
∴BM=CD,
∵AD=CE,
∴MD=CE,
∵∠ECD=∠ACB=60°,
∴∠M=∠ECD,
∴△BMD≌△DCE(SAS),
∴BD=DE,
而DF⊥BC,
BF=EF.