> 数学 >
证明:对任意的正整数n,有1/(1×2×3)+2/(2×3×4)+…+1/n(n+1)(n+2)<1/4
人气:220 ℃ 时间:2020-06-17 15:03:54
解答
1/N(N+1)(N+2)=(1/n(n+1)-1/(n+1)(n+2))*1/2
所以,
1/1*2*3 +1/2*3*4+...+1/N(N+1)(N+2)
=[(1/1*2-1/2*3)+(1/2*3-1/3*4)+...+(1/n(n+1)-1/(n+1)(n+2)]*1/2
=(1/2-1/(n+1)(n+2))*1/2
<1/2*1/2=1/4
所以,
1/1*2*3 +1/2*3*4+...+1/N(N+1)(N+2)<1/4
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版