1.
x²-2x+y²-4y+10
=x²-2x+1+y²-4y+4+5
=(x²-2x+1)+(y²-4y+4)+5
=(x-1)²+(y-2)²+5
因为(x-1)²≥0,(y-2)²≥0
所以(x-1)²+(y-2)²+5≥5
即当x=1,y=2时,x²-2x+y²-4y+10有最小值为5
2.
因为a(a-1)+(b-a²)=-7
所以a²-a+b-a²=-7
即a-b=7
所以(a²+b²)/2-ab
=(a²-2ab+b²)/2
=(a-b)²/2
=7²/2
=49/2
3.
因为x²+x-1=0,
所以x³+2x²+2004
=x³+x²-x+x²+x-1+2004+1
=(x³+x²-x)+(x²+x-1)+2005
=x(x²+x-1)+(x²+x-1)+2005
=x*0+0+2005
=2005