> 数学 >
计算sin^4(3π/8)-cos^4(3π/8)
人气:212 ℃ 时间:2020-01-28 02:10:15
解答
原式=[sin^2(3π/8)-cos^2(3π/8) ][sin^2(3π/8)+cos^2(3π/8) ] =[sin^2(3π/8)-cos^2(3π/8)] =[sin^2(3π/8)-(1-sin^2(3π/8)} =2sin^2(3π/8)-1 利用二倍角公式可得 =1-cos3π/4-1 =-cos3π/4 =-cos(π-π/4)...
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版