当∠ABC=∠EAC,∵AB为直径,
∴∠ACB=90°,
∴∠ABC+∠CAB=90°,
∴∠EAC+∠CAB=90°,
∴AB⊥EF,
∴EF为⊙O的切线;
故答案为AB⊥EF、∠BAE=90°、∠ABC=∠EAC;
(2)证明:如图2,作直径AD,连结CD,
∵AD为直径,
∴∠ACD=90°,
∴∠D+∠CAD=90°,
∵∠D=∠B,∠CAE=∠B,
![](http://hiphotos.baidu.com/zhidao/pic/item/9d82d158ccbf6c818371bd59bf3eb13533fa4038.jpg)
∴∠CAE=∠D,
∴∠EAC+∠CAD=90°,
∴AD⊥EF,
∴EF为⊙O的切线;
(3)如图3,作直径AD,连结CD,BD,
∵AD为直径,
∴∠ABD=90°,
∵∠CAE=∠ABC,
∴∠DAE+∠DAC=∠ABD+∠DBC,
而∠DAC=∠DBC,
∴∠DAE=∠ABD=90°,
∴AD⊥EF,
∴EF为⊙O的切线.