> 数学 >
设函数F(X)=4X^3+AX+2 曲线Y=F(X)在点P(0,2)处切线斜率为-12
求A的值
函数F(X)在区间[-3,2]的最大最小值
希望第2步详细说下
人气:292 ℃ 时间:2019-09-06 02:07:14
解答
k=f '(x)=12x^2+A
f '(0)=A=-12
f(x)=4x^3-12x+2
f '(x)=12x^2-12=12(x-1)(x+1)
极值点x=-1,x=1
因为
f(-3)=-70
f(-1)=10
f(1)=-6
f(2)=10
所以
min=-70
max=10
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版