如图,在四边形ABCD中,E为AB上一点,△ADE和△BCE都是等边三角形,AB、BC、CD、DA的中点分别为
P、Q、M、N,试判断四边形PQMN为怎样的四边形,并证明你的结论
人气:423 ℃ 时间:2019-09-26 00:20:18
解答
连结AC、BD.
∵ PQ为△ABC的中位线,
∴ PQ =1/2AC.
同理 MN=1/2AC.
∴ MN=PQ,MN//PQ
∴ 四边形PQMN为平行四边形.
在△AEC和△DEB中,
AE=DE,EC=EB,∠AED=60°=∠CEB,
即 ∠AEC=∠DEB.
∴ △AEC≌△DEB.
∴ AC=BD.
∴ PQ=1/2AC=1/2BD=PN.
∴ 四边形PQMN为菱形.
自己理解一下啊,我有事所以写得不详细,请原谅噢
推荐
- 如图,在四边形ABCD中,E为AB上的一点△ADE和△BCE都是等边三角形AB.BC.CD.DA的中点分别为P,Q,M,N,Q求是什
- 在四边形ABCD中,E为AB边上一点,△ADE和△BCE都是等边三角形,AB,BC,CD,DA的中点分别为P,Q,M,N
- 在四边形ABCD中E为AB上一点,△ADE和△BCE都是等边三角形,AB,BC,CD,DA的中点分别是P,Q,M,N,试判断四边形P
- 如图:在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P、Q、M、N分别为AB、BC、CD、DA的中点,则四边形MNPQ是 _ 形.
- 食物中的哪些可以通过燃烧释放出能量,燃烧过程需要什么
- 英语句子时态问题
- 松树的生长过程
- 更号8-更号18+更号 2分之1
猜你喜欢