证明:过N作NG∥AD,交AB于G,连接MG,可得| BN |
| ND |
| BG |
| AG |
由已知条件
| BN |
| ND |
| SM |
| MA |
| SM |
| MA |
| BG |
| AG |
∵MG⊄平面SBC,SB⊂平面SBC,∴MG∥平面SBC.
又AD∥BC,∴NG∥BC,NG⊄平面SBC,BC⊂平面SBC
∴NG∥平面SBC,NG∩MG=G,
∴平面SBC∥平面MNG,
∵MN⊂平面MNG,∴MN∥平面SBC.
故答案是∥.
| SM |
| MA |
| BN |
| ND |

证明:过N作NG∥AD,交AB于G,连接MG,可得| BN |
| ND |
| BG |
| AG |
| BN |
| ND |
| SM |
| MA |
| SM |
| MA |
| BG |
| AG |