> 数学 >
已知f(x)是以2为周期的偶函数,当x∈[0,1]时f(x)=x,若在区间[-1,3]内,关于x的方程f(x)=kx+k+1(k∈R,k≠-1)有四个根,则k的取值范围是 ___ .
人气:490 ℃ 时间:2019-08-19 20:40:00
解答
由已知可画出函数f(x)的图象,
先画出f(x)在x∈[0,1]上的图象,利用偶函数的性质画出
在x∈[-1,0]上的图象,再利用函数的周期性画出R上的图象,下面画出的是函数在x∈[-1,3]上的图象,如图:
又可知关于x的方程y=kx+k+1(k≠1)恒过点M(-1,1),
在上图中画出直线l0,l1,l2
显然当这些过定点M(-1,1)的直线位于l0与l2之间,
如L1时,才能与函数f(x)有四个交点.
又因为直线l0与l2的斜率分别为k0=0和k2=-
1
3
,因此k的取值范围应为:-
1
3
<k<0,
故答案为 (-
1
3
,0).
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版