已知椭圆x2/a2+y2/b2=1上一点P,F1,F2是椭圆的焦点若∠F1PF2=θ,求F1PF2面积
人气:415 ℃ 时间:2019-08-19 00:45:39
解答
PF1+PF2=2a,
F1F2=2c,
(PF1+PF2)^2=PF1²+PF2²+2PF1*PF2=4a²
由余弦定理cosθ=(PF1²+PF2²-4c²)/(2PF1*PF2)
化简得PF1*PF2=(4a²-4c²)/[2(1+cosθ)]=2b²/(1+cosθ)
由面积公式s=1/2*PF1*PF2*sinθ可以解得s=b²sinθ/(1+cosθ)
若要继续化简可以得到s=b²tan(θ/2).
推荐
- p是椭圆X2/a2+Y2/b2=1上一点,F1,F2为两焦点,角F1PF2等于A,证明:三角形面积等于b2tanA/2
- 已知F1,F2是椭圆X2/9+Y2/5=1的焦点,点P在椭圆上且角F1PF2=60o求F1PF2面积
- 设P为椭圆,X2/25+Y2/9=1上一点,F1,F2分别在左右焦点,角F1F2=60度,求三角形F1pF2的面积以及P的坐标!
- F1,F2是椭圆x2/a2+y2/b2=1(a>b>0)的两焦点,p是椭圆上任意一点,∠F1PF2=90°,求离心率的取值范围?
- 若点P是椭圆x2100+y264=1上的一点,F1,F2是焦点,且∠F1PF2=60°,则△F1PF2的面积为 _ .
- 88-7x=5x-20 4(4x-11)=3(22-2x) 9.4乘[1.28-(x-0.31)]=0.47
- 关于理想与信念的作文600字
- 共轭复数中i是什么
猜你喜欢