设f(x)=x2+px+q,p.q属于R M={X|X=f(x)}N={X|X=f[f(x)]}
求:证明M是N的子集
当M={-1,3}时,求N
人气:197 ℃ 时间:2020-03-24 14:27:36
解答
证:对于任意 y属于M,则有y=y^2+py+q,从而f[f(y)]=(y^2+py+q)^2+p(y^2+py+q)+q =y^2+py+q=y所以:y也属于N.从而有M是N的子集.当M={-1,3}时知-1,3是方程x^2+(p-1)x+q=0的两个根,由韦达定理知:p= -1,q=-3此时f(x)=x^2...
推荐
- 设二次函数f(x)=x2+px+q,集合A={x| f(x)=x,x∈R},集合B={x| f(x-1)=x+1,x∈R},当A={2}时,求集合B.
- 设f(x)=x^2+px+q(p,q∈R),M={x|x=f(x)},N={x|x=f[f(x)]},证明M包含于N,当M={-1,3
- 设f(X)=x的平方+px+q(p,q∈R),M={x|x=f(x)},N={x|x=f〔f(x)〕},
- 设f(x)=x2+px+q,A={x|x=f(x)},B={X|f〔f(x)〕}=x
- 设f=(x)=x平方+px+q,p,q属于 R,M={x┆x=f(x)},N={x┆x=f(f(x))}.证明M属于N?
- 糖蛋白受体蛋白,载体蛋白的不同
- 10x²+30x+20约分 怎么会变成10(x+1)(x+2) x³+2x²-x-2约分怎么变成(x+2)(x+1) (x-1)
- x-3/8x+110=75%+10
猜你喜欢