等腰直角三角形ABC,AB=AC,角BAC=90度M为边AC的中点BM垂直AD交BC于D,垂足为E连接DM,求证角AMB=角DMC
人气:409 ℃ 时间:2019-11-04 10:31:38
解答
证明:
过C点做CF⊥AC,交AD延长线于点F
∴∠ACF=90度
∵∠BAC=90度
∴AB‖CF
∴∠BAE=∠F
∵∠BAC=90度
∴∠BAE+∠MAE=90度
∵BM⊥AD
∴∠AMB+∠MAE=90度
∴∠BAE=∠AMB
∴∠AMB=∠F
在三角形ABM和三角形AFC中
∵AB=AC,∠ACF=∠BAC=90度,∠AMB=∠F
∴三角形ABM全等于三角形AFC(AAS)
∴AM=CF
∵AM=CM
∴CM=CF
在三角形CMD和三角形CFD中
∵∠ACB=∠FCD=45度(因为三角形ABC是等腰直角三角形,所以角ACB=45度,所以角DCF=90-45=45度),CM=CF,CD=CD
∴三角形CMD全等于三角形CFD(SAS)
∴∠F=∠DMC
又∵∠F=∠AMB
∴∠AMB=∠DMC
推荐
- 如图,设点M是等腰Rt△ABC的直角边AC的中点,AD⊥BM于E,AD交BC于D.求证:∠AMB=∠CMD(请用两种不同的方法证明)
- 在三解形ABC中,角A等于90度,AB等于AC,M是AC边上的中点,AD垂直于BM交BC于D,交BM于E,求证:角AMB等于角DMC.
- 已知,△ABC为直角三角形,∠ABC=90°以AB为直径的圆交AC于E,D是BC中点,OD交圆O于M,求证2DE^=DM*AC+DM*AB
- 在直角三角形abc中∠c=90°d为ab边上一点,点m,n分别在bc,ac边上且dm⊥dn,作mf⊥ab于f,ne⊥ab于e
- △ABC,△CEF都为等腰直角三角形,当E,F在AC,BC上,∠ACB=90°,连BE,AF,M为BE中心,连DM,求DM/AE的值
- 有关于运动的格言
- 红色的南瓜叫什么瓜
- 英语翻译
猜你喜欢