证明:矩阵A与A的转置A'的乘积的秩等于A的秩,即r(AA')=r(A).
一个线性代数问题。
人气:281 ℃ 时间:2019-08-20 19:55:41
解答
设 A是 m×n 的矩阵.
可以通过证明 Ax=0 和A'Ax=0 两个n元齐次方程同解证得 r(A'A)=r(A)
1、Ax=0 肯定是 A'Ax=0 的解,好理解.
2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0
故两个方程是同解的.
同理可得 r(AA')=r(A')
另外 有 r(A)=r(A')
所以综上 r(A)=r(A')=r(AA')=r(A'A)
推荐
猜你喜欢
- 哪些花木喜欢酸性土壤?哪些花木喜欢碱性土壤?
- 曹刿论战中,鲁庄公想凭什么应战,曹刿认为应战的根本条件是什么
- what does she have something to do with me
- 已知⊙O中弦AB等于半径,求弧AB所对的圆心角、圆周角的度数(弧)
- 在三角形ABC中,CD/DA=AE/EB=1/2,记向量BC=向量a,向量CA=向量b,求证:向量DE=1/3(向量b-向量a)
- 请大家帮我打出音标 Blake , Sophie Dupont ,Hans , Naoko ,
- 密度是0.5×10立方kg/m³的木块,体积是2m³,当它漂浮在水面上静止时,求木块的重力
- 小明和小花走楼梯,小明上楼梯需要3分钟,小花下楼梯需要2分钟,问他们相遇时需要几分钟?