ln(1+x)~x等价无穷小,那ln(1+sinx)和sinx是等价无穷小吗?
是不是必须是x趋近0时才成立?还是都成立?
人气:317 ℃ 时间:2020-03-23 08:38:45
解答
楼主你的概念就有问题
我们讨论的就是当x趋于零的时候的Taylor多项式的一次项
因此所有等价无穷小讨论的前提是都在一个点趋于0
是等价无穷小.因为sinx和x等价.
推荐
- 关于等价无穷小 X趋于0时 sinX~ln(X+1)~tanX 那X前面的系数一定要1么?
- 求等价无穷小 [(1+sinx)^x]-1 ,xtan(x)^x ,和[((e)^(sin^2)x)-1]*ln(1+x^2) 这三项的各个等价无穷小
- 急,x→0,lim((ln(1-x))/sinx+1)/x^2 这里面((ln(1-x))/sinx可否用等价无穷小,或洛必达法则
- x-sinx 等价无穷小是什么?
- lim(tanx-sinx)/ln(1+x^x^x),利用等价无穷小的性质
- 现在英国和美国货币中还有penny,dime,nickel,quarter这些符号吗?
- The poor man ----(be) hungry for quite a few days 中间填什么为什么
- 在晴朗的夏日中午,如果往叔或花的叶子上浇水,常会使叶子烧焦,你知道是为什么吗?
猜你喜欢