已知数列{an}满足na(n+1)=2(n+1)an,a1=1,求证{an/n}为等比数列(前一个n+1为下标)
人气:196 ℃ 时间:2020-05-12 10:05:22
解答
na(n+1)=2(n+1)an
a(n+1)/(n+1)=2[an/n]
即[a(n+1)/(n+1)]/[an/n]=2
而a1/1=1
所以{an/n}是以1为首项,2为公比的等比数列
推荐
- 数列an中,已知a1=6,nan-na【(n-1)】下标=a(n-1)+n方+n(n>=2) 1设bn=an/(n+1)求证bn是等比数列2,求
- 已知数列{an}的前n项的和为Sn,且a1=1,na(n+1)=(n+2)Sn,n属于N*.求证数列{Sn/n}为等比数列
- 设数列an的前n项和为Sn 已知a1=1 na的第n+1次=(n+2)Sn(n属于N正) 证明数列Sn/n是等比数列并求Sn 若数列...
- 若公比为c的等比数列{an}的首项a1=1且满足an=[a(n-1)+a(n-2)]/2 (n=3,4,…) 1.求c的值; 2.求数列{Na...
- 数列{an}中,a1=2,an+1=4an-3n+1,求证{an-n}是等比数列 4an中n为下标an+1中n+1为下标an-n中an的n为下标
- 求一篇英语作文,最好是原创,the positive and negative impacts of tourism,300字左右~
- 童心向党——做一个有道德的人 这篇作文怎么写?
- 若(sina)^2+2(sinb)^2=2cosx 求(sina)^2+(sinb)^2的最大值和最小值?
猜你喜欢