设A为n阶方阵,且秩R(A)=n-1,a1,a2是非齐次方程组 AX=b的两个不同的解向量,则AX=0的通解为
人气:432 ℃ 时间:2020-03-31 01:31:49
解答
因为 R(A)=n-1
所以 AX=0 的基础解系含 n-r(A) = 1 个解向量
所以 AX=0的通解为 k (a1-a2).
推荐
- 设A为n阶方阵,且r(A)=n-1,α1,α2是AX=0的两个不同的解向量,则方程组AX=0的通解为
- 设A为n阶方阵,且R(A)=n-1,a1,a2是AX=0的两个不同的解向量,则AX=0的通解为?A.ka1
- 设n阶方阵A的秩为n-1,a1,a2,是齐次线性方程组Ax=0的两个不同的解向量,则x=0的通解为什么是k(a1-a2)?
- a1=(1,2,3,4),a2+a3=(0,1,2,3)a1,a2,a3是四元线性方程组AX=b的三个解向量,r(A)=3则AX=b的通解具体表达式
- 设a1,a2是n元齐次线性方程组AX=0的两个不同解向量,又已知R(A)=n-1,则AX=0的通解是?
- 这句中文我这么翻对不对?“我与管理层进行了交流,然后总结出了5个因素.”(发生在过去)
- 4KG水升高20度需要多少热量
- 《孤雁》中“_______,________”是作者融入自己同情孤雁的思想感情
猜你喜欢