直线过点(0,2),且被圆x^2+y^=4截得的弦长为2,求此直线方程.
帮个忙,
人气:123 ℃ 时间:2020-04-13 19:21:56
解答
圆心是原点O,半径=2
现在弦长AB=2
则过O做OC垂直AB
OA=r=2
AC=1/2AB=1
所以OC=根号(2^2-1^2)=√3
圆心到直线距离=√3
设斜率=k
y-2=kx
kx-y+2=0
圆心到直线距离=|0-0+2|/√(k^2+1)=√3
4/(k^2+1)=3
k^2=1/3
k=√3/3,k=-√3/3
代如直线方程y-2=kx 即得答案
推荐
猜你喜欢
- 有关基因工程的基本工具的几个简答题.
- (1)在微风中,在阳光下,燕子斜着身子在天空中掠过,“唧”的一声,已由这边的稻田上,飞到那边的柳树下了;还有几只横掠过湖面,剪尾或翼尖偶尔沾了一下水面,那小圆晕便一圈一圈地荡漾开去.这一段描写了小燕子活泼机灵的特点.
- 正五边形能不能密铺、正八边形呢?
- 一个圆形舞台,直径是20米,它的周长是多少米?如果在舞台上铺设每平方米80元的木板,至少需要多少元?
- 10-20毫克/千克的赤霉素+0.3%的尿素是什么意思
- 当铝原子变成离子 那么它的核电荷数是多少
- 反法西斯战争的有哪些国家
- 当√2-x有意义时,化简√x2-4x+4-√x2-6x+9的结果