>
数学
>
已知:如图,AD、BF相交于点O,点E、C在BF上,BE=FC,AC=DE,AB=DF.求证:OA=OD,OB=OF.
人气:476 ℃ 时间:2020-06-08 14:44:39
解答
证明:如图:
连接AF,BD,
∵BE=CF,
∴BC=FE(等式的性质).
在△ABC和△DFE中,
AB=DF
AC=DE
BC=FE
,
∴△ABC≌△DFE(SSS)
∴∠ABF=∠DFB(全等三角形的对应角相等),
∴AB∥DF(内错角相等都,两直线平行).
又∵AB=DF,
∴四边形ABDF为平行四边形(一组对边平行且相等的四边形是平行四边形)
∴OA=OD,OB=OF(平行四边形的对角线互相平分).
推荐
如图,AD是△ABC的角平分线,DE‖AB交AC与点E,F是AB上的一点,且BF=AE求证BE、DF互相平分
已知:如图,AD是三角形ABC的角平分线,DE平行AB交AC于点E,F是AB上的一点,且BF=AE,求证:BE、DF互相平分
如图,AD=BC,AB=DC,DE=BF,求证BE=DF
如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌△CFE.
如图,AB=DC,AD=BC,DE=BF,求证:BE=DF
9.已知P为平行四边形abcd内一点,S平行四边形abcd=100,则S△pab+S△pcd=().
亚硫酸钠试剂久置在空气中被部分氧化成Na2so4,取10克试剂加入到2.5mol/L25mlL硫酸中,完全反应后,加入足量氯化钡溶液,产生18.64克白色沉淀,问试剂中亚硫酸钠的百分含量是多少?
英语作文,海的女儿读后感,带翻译的
猜你喜欢
100件产品中有10件次品,用不放回的方式从中每次取1件,连取3次,求第三次才取得次品的概率
已知函数f(x)=4x²-kx-8在[5,20]上具有单调性,则实数k的取值范围是
Look,here comes the teacher .为什么不用进行时啊,而用comes
y=2∫(π/2,0)sin^6(x)dx的定积分如何求出?
那种酸可以溶解金属镍?如何调配那种酸?
在不断的成长中我学会了很多东西用英语怎么说
英语翻译
我们家中使用的液化气是
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版