直线y=2x与抛物线y^2=px+32(p>0)交于A,B两点,线段AB的垂直平分线过点Q(-5,5),求P值
人气:100 ℃ 时间:2020-03-29 05:32:37
解答
y=2x,代入
4x^2-px-32=0
所以x1+x2=p/4
交点坐标(x1,y1),(x2,y2)
AB垂直平分线上的点到A和B距离相等
所以(-5-x1)^2+(5-y1)^2=(-5-x2)^2+(5-y2)^2
25+10x1+x1^2+25-10y1+y1^2=25+10x2+x2^2+25-10y2+y2^2
(x1^2-x2^2)+10(x1-x2)-10(y1-y2)+(y1^2-y2)^2=0
(x1+x2)(x1-x2)+10(x1-x2)-10(y1-y2)+(y1+y2)(y1-y2)=0
(x1+x2)(x1-x2)+10(x1-x2)-10(2x1-2x2)+(2x1+2x2)(2x1-2x2)=0
(x1+x2)(x1-x2)-2(x1-x2)=0
(x1-x12)(x1+x2-2)=0
若x1=x2,则y1=y2,是同一个点,不成立
所以x1+x2=2
p/4=2
p=8
推荐
- 直线y=1/2x与抛物线y=1/8x^2-4交于A,B两点,线段AB的垂直平分线与直线y=-5交于Q点
- 直线y=1/2x与抛物线y=1/8x2—4交于A、B两点,线段AB的垂直平分线与直线y=—5交于Q点.
- 已知抛物线y=x^2+px+q与x轴交于AB,且过点(-1 -1)设线段AB为d当p为何值d^2取得最小
- 已知直线y=-1/2x与抛物线y=-1/4x2+6交于A、B两点求线段AB的垂直平分线的解析式
- 过点(-1,-6)的直线L与抛物线Y*Y=4X交于AB两点,若线段AB的中垂线经过点P(9/2,0),求k.
- 已知向量a,b满足向量a的模=1,向量a*(向量a-向量b)=0,则向量b的模的取值范围是?
- 解释下面加点词的意思
- gee,do i know u,that such emotional young man
猜你喜欢