> 数学 >
如图,已知直线l的函数表达式为y=−
4
3
x+8
,且l与x轴,y轴分别交于A,B两点,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时动点P从A点开始在线段AO上以每秒1个单位长度的速度向点O移动,设点P、Q移动的时间为t秒.
(1)当t为何值时,△APQ是以PQ为底的等腰三角形?
(2)求出点P、Q的坐标;(用含t的式子表达)
(3)当t为何值时,△APQ的面积是△ABO面积的
1
5
人气:494 ℃ 时间:2019-10-30 02:32:40
解答
(1)当AQ=AP时,是以PQ为底的等腰三角形,
∵直线l的函数表达式为y=−
4
3
x+8
,且l与x轴,y轴分别交于A,B两点,
∴A(6,0),B(0,8),
∴AB=10,
∴AQ=10-2t,AP=t
即10-2t=t,
t=
10
3
(秒),
t=
10
3
时,是以PQ为底的等腰三角形;
(2)过Q点分别向x轴,y轴引垂线,垂足分别是M,N,
∴NQ∥OA,QM∥OB,
∴△BNQ∽△QMA∽△BOA,
设Q(x,y)
∴BQ=2t,AP=t
而△BQN∽△QMA∽△BOA,
BQ
QN
AB
OA

QA
QM
AB
BO

2t
x
10
6

10−2t
y
10
8

x=
6
5
t
y=
4
5
(10−2t)

Q,P的坐标分别是[
6
5
t,
4
5
(10−2t)]
,(6-t,0);
(3)∵△APQ的面积=
1
2
AP×QM

△AOB的面积=
1
2
×6×8=24

1
2
4
5
(10−2t)=
1
5
×24

解得,t1=2,t2=3
∴当t1=2秒或,t2=3秒时,△APQ的面积是△ABO面积的
1
5
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版