已知函数f(x)满足f(-x)=-f(x),且在(-2,2)上单调递增,且有f(2+a)+f(1-2a)>0,求a的取值范围
如题
人气:408 ℃ 时间:2020-05-20 19:30:31
解答
f(2+a)>-f(1-2a)
所以f(2+a)>f[-(1-2a)]
f(2+a)>f(2a-1)
递增,且定义域
则2>2+a>2a-1>-2
2>2+a
a2a-1
a-2
a>-1/2
所以-1/2
推荐
- 设函数f(x)是定义在R上的偶函数,并在区间(-∞,0)内单调递增,f(2a^2+a+1)
- 已知奇函数f(x)是定义在(-2,2)上的单调递减函数,当f(2-a)+f(2a-3)
- 已知函数f(x)满足f(-x)=-f(x),且在(-2,2)上单调递减,且有f(2+a)+f(1-2a)>0,求a的取值范围.
- 已知函数f(x)为奇函数,在定义域(-2,2)上单调递增,且有f(2+a)+f(1-2a)>0,求实数a的取值范围.
- 若函数f(x)=x²-2(2a+1)x+3在【-2,2】上单调,求a的取值范围
- The gap's being closed easily enables people to enjoy...
- 英语:so far this year we () a fall in house prices by between 3 and 5 percent
- I hate those people who like to take sth out of nothing.
猜你喜欢