在等边三角形ABC内有一点P,使角APB、角BPC、角APC之比为5:6:7,求以AP、BP、CP为边的三角形三内角之比.
人气:419 ℃ 时间:2019-08-21 05:36:53
解答
三个内角的比为2:3:4.理由:
在AP的一侧以AP长为边作等边△APD,使D位于△ABC外AC边一侧,
易证△ABP≌△ACD(SAS),
因此,CD=PB,PD=PA,△APD就是以AP、BP、CP为边的三角形
设∠APB=5x,∠BPC=6x,∠APC=7x,
由周角为360°,得∠APB+∠BPC+∠APC=18x=360°,∴x=20°,
于是,∠APC=140°,∠APB=100°,∠BPC=120°.
∠DPC=∠APC-60°=80°,
∠PDC=∠ADC-∠ADP=∠APB-60°=40°,
从而∠PCD=180°-(∠DPC+PDC)=60°
所以,三内角的比为40°:60°:80°=2:3:4
推荐
- 已知:如图,P为等边△ABC内一点,∠APB=113°,∠APC=123°,试说明:以AP、BP、CP为边长可以构成一个三角形,并确定所构成三角形的各内角的度数.
- 一等边三角形ABC,有一点P在三角形内,∠APB=113度,∠APC=123度,问以AP,BP.CP为边的三角形最小内角为?
- 已知:如图,P为等边△ABC内一点,∠APB=113°,∠APC=123°,试说明:以AP、BP、CP为边长可以构成一个三角形,并确定所构成三角形的各内角的度数.
- 已知:如图,P为等边△ABC内一点,∠APB=113°,∠APC=123°,试说明:以AP、BP、CP为边长可以构成一个三角形,并确定所构成三角形的各内角的度数.
- P是等边三角形ABC内部的一点,且∠APC=110°,∠BPC=132°,求以AP,BP.CP的长三角
- 已知点p(x,y)满足向量/op/==0的概率
- 已知a+b=1则a平方减去b平方减去2b的值
- 运输队在规定完成任务,若减少6辆车,再运3天可完成;若加4辆车,提前1天完成,求原有车多少?原定天数是多少?
猜你喜欢