> 数学 >
求定积分∫ye^(-y)dy,其中积分区域是0到正无穷
人气:247 ℃ 时间:2020-07-24 02:12:32
解答
∫ye^(-y)dy
=-∫ye^(-y)d(-y)
=-∫yde^(-y)
=-ye^(-y)+∫e^(-y)dy
=-ye^(-y)-∫e^(-y)d(-y)
=-ye^(-y)-e^(-y)
=-(y+1)/e^y
x趋于无穷
-(y+1)/e^y是无穷/无穷
可以用罗比达法则求极限
=-1/e^y
所以极限=0
x=0,-(y+1)/e^y=-1
所以原式=0-(-1)=1
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版