∵f(0)=0,所以c=0,
即f(x)=ax2+bx,
f(x+1)=a(x+1)2+b(x+1)=ax2+2ax+a+bx+b=f(x)+x+1=ax2+bx+x+1,
消去相同项得2ax+a+b=x+1
即2a=1,a+b=1,
解得a=b=
1 |
2 |
∴f(x)=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
8 |
1 |
2 |
1 |
2 |
对于函数求y=f(x2-2),令t=x2-2≥-2,所以要求函数y=f(x2-2)值域,即求函数y=f(t)在[-2,+∞)上的值域,
所以f(t)≥f(−
1 |
2 |
1 |
8 |
所以函数y=f(x2-2)的值域为[-
1 |
8 |