> 数学 >
关于多元函数微分法
x^2+y^2=1 z=3在点(0,3)处切线方程
人气:188 ℃ 时间:2020-03-30 01:30:11
解答
令 F=x^2+y^2-1,则 F'=2x,F'=2y,F'=0,在点(0,1,3),法向量是 n1={0,2,0},
令 G=z-3,则 G'=0,G'=0,G'=1,在点(0,1,3),法向量是 n2={0,0,1},
在点(0,1,3),切线向量是 n1×n2={2,0,0},即{1.0.0},则在点(0,1,3)的切线方程是
x/1=(y-1)/0=(z-3)/0.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版