有一个任意三角形ABC,M.N分别为AC.BC上任意点 ,求在AB上一点P,使得三角形PMN的周长最小
人气:218 ℃ 时间:2020-05-10 10:40:19
解答
两种方法:
(1)作M关于AB的对称点M',连结M'N,交AB于一点,这一点即为所求的P点.
(2)作N关于AB的对称点N',连结MN',交AB于一点,这一点即为所求的P点.
证明如下:
作N关于AB的对称点N',连结MN',交AB于一点P;则AB垂直平分NN'
连接PN,则PN=PN';
∴△PMN的周长为:C=MN+MP+PN=MN+MP+PN'=MN+MN';
现在边AB上任取一点P',P'与P不重合;
连接P'M,P'N',P'N;则P'N=P'N';
在△P'MN'中,有P'M+P'N'<MN'.
∴在△P'MN的周长C'=MN+MP'+P'N=MN+MP'+P'N'<MN+MN'=C;
即点P为所求的点
推荐
- 如图,M·N分别是三角形ABC的边AC·BC上的点,在AB上求做一点P使三角形PMN的周长最小,并说明你这样作的理由.
- 在三角形ABC中,点P是边BC上的一点,分别在边AB、AC上示作点M、N,使三角形PMN周长最短.
- 如图,点M,N为△ABC的边AC,BC上的两个定点,用尺规在AB上求作一点P,使 △PMN的周长最小.
- 如图,MN分别是△ABC的边AC、BC上的点,在AB上求作一点P,使三角形PMN的周长最小,并说明你这样作的理由
- △ABC中,AB:AC=3:2,BC=AC+1,若△ABC的中线BD把△ABC的周长分成两部分的比是8:7,求边AB,AC的长.
- watch(第三人称单数)( )
- 流星拖着一条发光的尾巴是什么能转化什么能
- 聿可以加什么偏旁
猜你喜欢