> 数学 >
Y=(1+X)/√X,求函数的单调区间和值域
人气:329 ℃ 时间:2020-01-09 09:54:23
解答
显然x>0
y=(1+x)/√X=√[(1+x)^2/x]=√[x+(1/x)+2]
因为x>0,可以考虑用均值定理
x+(1/x)>=2√[x*(1/x)]=2,当x=1/x即x=1时取等号.
所以,y=√[x+(1/x)+2]>=√(2+2)=2
即函数值域为 [2,正无穷)
对应单调区间,可以在其定义域内设0
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版