>
数学
>
椭圆的焦点三角形面积公式的证明过程
人气:384 ℃ 时间:2019-10-27 14:37:17
解答
焦点△F1PF2,设∠F1PF2=θ PF1=m PF2=n
m+n=2a
(F1F2)^2=m^2+n^2-2mncosθ
4c^2=(m+n)^2-2mn-2mncosθ=4a^2-2mn(1+cosθ)
mn(1+cosθ)=2a^2-2c^2=2b^2
mn=2b^2/(1+cosθ)
S=(mnsinθ)/2
推荐
证明S=b^2/tan(a/2)(椭圆焦点三角形面积公式)
椭圆焦点三角形面积公式推导
高中数学 椭圆的焦点三角形面积公式为
椭圆过焦点三角形求面积公式
椭圆焦点三角形面积公式是啥
watch(第三人称单数)( )
流星拖着一条发光的尾巴是什么能转化什么能
聿可以加什么偏旁
猜你喜欢
有机化学中的质子转移和质子交换分别是什么?遇到题目如何区分?请具体解释,
浅谈初中英语如何进行写作教学
英语翻译
氨根离子里的氮元素是几价啊?+3还是—3,黄绿色气体都有什么啊?
解不等式 3分之2x-1-6分之9x+2≤1
证明:函数F(x)=3x+2在(—∞,+∞)上是增函数
单缝的衍射条纹与双缝的干涉条纹有什么区别和联系
问:但我不确定,物理比较差.
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版