> 数学 >
证明德摩根法则
RT
是数学集合中的概念 又叫摩根定律
.....我问的是 怎么证明...
人气:325 ℃ 时间:2019-08-02 18:57:02
解答
德摩根法则
非(p 且 q)=(非 p)或(非 q)
非(p 或 q)=(非 p)且(非 q)
首先要明白:全称量词和存在量词互为对偶:
“对所有x,P(x)皆成立”等价于“不存在x,使P(x)不成立”;
“存在x,使P(x)成立”等价于“并非对所有x,P(x)都不成立”.
非(p 且 q)=(非 p)或(非 q)
左边式子的意思就是,不存在x,使得p(x)和q(x)同时成立,根据全称量词和存在量词互为对偶:
得到对任意x,p(x)不成立或者q(x)不成立,
写成集合语言就是非(p 且 q)=(非 p)或(非 q)
所以就证明了第一个,
第二个根据对偶同理可得
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版