> 数学 >
用裂项求和法求解
求数列 1/n(n+2)的前n项的和
是一样的。不过我想问一下,,你们怎么想到1/2[1/n - 1/(n+2)]=1/n(n+2)的呢?我怎么想不到的- -
人气:146 ℃ 时间:2020-06-24 22:33:10
解答
恩,我们来分析一下规律~
首先,看第一项:a1=1/1×(1+2)=1/3=1/2[1/1-1/(1×2)]
第二项:a2=1/2×﹙2+2﹚=1/8=1/2[1/2-1/(2+2)]
… … … … … … … … … … … … … …
以此类推,最后一项就是an=1/n×﹙n+2﹚=1/2[1/n-1/﹙n+2)]
那么,sn=1/2(1-1/3)+1/2(1/2-1/4)+1/2(1/3-1/5)+…+1/2(1/n-1/n+2)
=1/2(1+1/2-1/n+1-1/n+2) (打开括号之后全部抵消完了~)
然后,规律是:求sn=1/n(n+a)(a为常数,一般是正整数~0)=1/a[1/n-1/﹙n+a﹚]~
大抵意思就是,分子是几,最后裂项出来就乘以几分之一~
希望能看懂吧,不算复杂,数列里很简单的东西~sn=1/2(1-1/3)+1/2(1/2-1/4)+1/2(1/3-1/5)+…+1/2(1/n-1/n+2)=1/2(1-1/3+1/2-1/4+1/3-1/5+…+1/n-1/n+1)我这样计算,怎么觉得毫无规律的,,,不知道哪些可以抵消、哪些不可以抵消呀?拜托了,我数学比较差,嘻嘻。
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版