已知圆C:x^2+(y-2)^2=1上一点P与双曲线x^2-y^2=1上一点Q,求PQ两点距离的最小值
人气:323 ℃ 时间:2020-03-22 18:35:50
解答
由于圆外一点到圆的最小距离是该点到圆心的距离减去半径,
所以双曲线x²-y²=1上一点Q到圆的最小距离是点Q到圆心的距离减去圆的半径.
圆x²+(y-2)² =1的圆心为(0,2),半径为1,
设Q(x,y),则PQ两点距离的最小值为
√(x² +(y-2)²)-1
=√(y² +(y-2)²)-1
=√(2y²-4y+5)-1
>=√3-1
其中用到Q(x,y)双曲线x²-y² =1上,
坐标满足双曲线方程,
而上式在y=1时取最小值.
推荐
- 已知圆X^2 +(Y-2)^2 =1.一点P与双曲线X^2 -Y^2 =1上一点Q,求P.Q两点距离的最小值
- 已知P,Q分别是圆x2+(y-2)2=1与双曲线x2-y2=1上的动点,求PQ的最小值
- 已知P为双曲线x^2-4y^2=4上的动点,Q是圆x^2+(y-2)^2=1/4上的动点,求|PQ|的最小值
- 已知圆O:x^2+(y-2)^2=1上一点P与双曲线x^2-y^2=1上一点Q,求P、Q两点的最小距离.
- 设p是圆 x^2+(y-2)^2=1上的一个动点,Q为双曲线x^2-y^2=1上的一个动点,求|PQ|的最小值?
- 为什么用if而不用because
- 水泥厂三月份上半月完成月计划产量的62%,下半月生产150吨,结果超额完成全月计划12%,三月份原计划生产
- 几何 (12 19:44:37)
猜你喜欢