1-(sin^6a+cos^6a)
根据a^3+b^3=(a+b)(a^2-a*b+b^2)
=1-[(sin^2a+cos^2a)*(sin^4a-sin^2acos^2a+cos^4a)]
根据sin^2a+cos^2a=1
=1-sin^4a-sin^2acos^2a-cos^4a
=(sin^2a+cos^2a)-sin^4a+sin^2acos^2a-cos^4a
=(sin^2a-sin^4a)+(cos^2a-cos^4a)+sin^2acos^2a
因为sin^2a-sin^4a=sin^2a(1-sin^2a)
=sin^2a*cos^2a
同理cos^2a-cos^4a=sin^2a*cos^2a
又因为2sina*cosa=sin2a
所以原式=3sin^2a*cos^2a