为什么圆内接多边形的周长最大时是正多边形
人气:393 ℃ 时间:2020-05-20 07:39:50
解答
2010-1-27 13:29 设四边形每边的圆心角分别为 2A,2B,2C,2D.原半径为R.
有 A+B+C+D=pi (3.1415926535..)
则四边分别为RcosA、RcosB、RcosC、RcosD.
周长=R(cosA+cosB+cosC+cosD)有(A+B+C+D=pi)
用一个微分方程可证,忘了什么方程了
简单方法:
设两对顶点确定,只讨论其夹两边:
有总长=R(cosA+cosB) (A+B=定值)
易证A=B时总长最大.此时两遍相等
同理可知另两边也应相等最大.
有A=B,C=D
再证A=C,方法同上面证两边一样.
于是得证.
推荐
猜你喜欢
- 已知极限lim(x→∞)(x^2+1)/x+1-(ax+b)=0,求常数a,b
- 一块平行四边形的菜地,底80M,6M,这地共收油菜籽842.24千克,平均没公顷能收多少千克的油菜籽
- 时针和分针在一昼夜重合多少次?
- 等量同种电荷连线中点,电势不为零 为什么
- NaHCO3与Na2CO3反应
- 滴定操作时,为什么经过三十秒不褪色为终点
- 人类改变环境的能力超过其他生物的原因,为什么包括 产生了语言,大脑的发育,能制造工具这三方面?
- 已知:如图,在平行四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,且AE=CG,BF=DH. 求证:△AEH≌△CGF.