已知a,b,c属于R+,a+b+c=1,求证:1/a+1/b+1/c>=9
人气:227 ℃ 时间:2020-02-06 05:24:26
解答
如果知道Cauchy不等式,直接1/a+1/b+1/c = (a+b+c)(1/a+1/b+1/c) ≥ (1+1+1)² = 9.
如果只会均值不等式,就展开1/a+1/b+1/c = (a+b+c)(1/a+1/b+1/c)
= 3+(a/b+b/a)+(b/c+c/b)+(c/a+a/c) ≥ 3+2+2+2 = 9.
推荐
- 已知a,b,c∈R+,a+b+c=1,求证:1/a+1/b+1/c≥9.
- 已知a,b,c.属于R+,且a+b+c=1,求证1/a+1/b+1/c>=9
- 已知a,b,c.属于R+,( a/b+b/c+c/a)(b/a+c/b+/a/c)≥9
- 已知a,b,c属于R,a+b+c=1,求证:1/(a+1)+1/(b+1)+(c+1)>=9/4
- 已知a,b,c∈R+,a+b+c=1,求证:1/a+1/b+1/c≥9.
- kalenjin women won all their events as well(同义句转换)
- 虚数的虚数次方:i^i唯一吗
- 一个圆锥与一个圆柱的底面积比是3:2,体积比是2:5,如果圆柱的高与圆锥高之和是36厘米,求圆锥的高是多少厘米.
猜你喜欢