x²+y²-2x+4y=0
(x²-2x+1)+(y²+4y+4)=5
(x-1)²+(y+2)²=5
令x=1+√5cosx y=-2+√5sinx
x-2y=1+√5cosx+4-2√5sinx
=√5(cosx-2sinx)+5
=5cos(x+θ)+5 其中,tanθ=2
当cos(x+θ)=1时,x-2y有最大值(x-2y)max=10这种方法我知道,就想问一下若令z=x-2y,则它表示直线x-2y-z=0在x轴上的截距。理由?? 这种方法。。这道题本不需要用数形结合的方法。
令x-2y=z
令y=0,则x=z,即直线x-2y-z=0过x轴上(z,0)点。z为x-2y-z=0在x轴上的截距。
这个应该很容易理解吧。