若a,b,c>0且
a(a+b+c)+bc=4−2,则2a+b+c的最小值为( )
A.
−1B.
+1C.
2+2D.
2−2
人气:446 ℃ 时间:2020-05-12 04:28:18
解答
若a,b,c>0且a(a+b+c)+bc=4−23,所以a2+ab+ac+bc=4−23,4−23=a2+ab+ac+bc=14(4a2+4ab+4ac+2bc+2bc)≤14(4a2+4ab+4ac+2bc+b2+c2)∴(23−2)2≤(2a+b+c)2,则(2a+b+c)≥23−2,故选项为D....
推荐
猜你喜欢