∵f(x)=2ax2+2x-3-a=0在[-1,1]上有解,∴(2x2-1)a=3-2x在[-1,1]上有解
∴
| 1 |
| a |
| 2x2-1 |
| 3-2x |
问题转化为求函数y=
| 2x2-1 |
| 3-2x |
设t=3-2x,x∈[-1,1],则2x=3-t,t∈[1,5],
∴y=
| 1 |
| 2 |
| 7 |
| t |
设 g(t)=t+
| 7 |
| t |
| 7 |
| t2 |
| 7 |
t∈(
| 7 |
∴y的取值范围是[
| 7 |
∴
| 1 |
| a |
| 7 |
∴a≥1或a≤
-3-
| ||
| 2 |
故答案为(-∞,
-3-
| ||
| 2 |
| 1 |
| a |
| 2x2-1 |
| 3-2x |
| 2x2-1 |
| 3-2x |
| 1 |
| 2 |
| 7 |
| t |
| 7 |
| t |
| 7 |
| t2 |
| 7 |
| 7 |
| 7 |
| 1 |
| a |
| 7 |
-3-
| ||
| 2 |
-3-
| ||
| 2 |