∵⊙O是△ABC的内切圆,与三边分别相切于点E、F、G.
∴OF⊥BC,OE⊥AC,∠ACB=90°,
∴四边形CEOF是矩形,
又∵EO=OF,
∴四边形CEOF是正方形,
CE=CF=r1.
又∵AG=AE=3-r1,BG=BF=4-r1,
AG+BG=5,
∴(3-r1)+(4-r1)=5.
即r1=1.
![](http://hiphotos.baidu.com/zhidao/pic/item/574e9258d109b3de28fd3ed9cfbf6c81810a4cc5.jpg)
(2)连接OG,在Rt△AOG中,
∵r1=1,AG=3-r1=2,
tan∠OAG=
OG |
AG |
1 |
2 |
(Ⅱ)(1)连接O1A、O2B,作O1D⊥AB交于点D、O2E⊥AB交于点E,AO1、BO2分别平分∠CAB、∠ABC.
由tan∠OAG=
1 |
2 |
1 |
2 |
同理可得:tan∠O2BE=
O2E |
BE |
1 |
3 |
∴AD=2r2,DE=2r2,BE=3r2.
∵AD+DE+BE=5,
r2=
5 |
7 |
(2)如图③,连接O1A、OnB,作O1D⊥AB交于点D、O2E⊥AB交于点E、…、OnM⊥AB交于点M.
则AO1、BOn分别平分∠CAB、∠ABC.
tan∠O1AD=
1 |
2 |
1 |
3 |
AD=2rn,DE=2rn,…,MB=3rn,
又∵AD+DE+…+MB=5,
2rn+2rn+…+3rn=5,
(2n+3)rn=5,
rn=
5 |
2n+3 |