在三角形ABC的外接圆半径为R,且2R(sin^2A-sin^2C)=(根号2倍a-b)sinB,求三角形ABC面积的最大值.
人气:402 ℃ 时间:2019-10-29 06:17:56
解答
2R[(sinA)^2-(sinC)^2]=2R[a^2/(2R)^2-c^2/(2R)^2]=[1/(2R)](a^2-c^2)
(√2a-b)sinB=[1/(2R)](√2ab-b^2)
由题意知,[1/(2R)](a^2-c^2)=[1/(2R)](√2ab-b^2)
即a^2-c^2=√2ab-b^2
cosC=(a^2+b^2-c^2)/(2ab)=√2/2,则C=π/4
c=2RsinC=√2R
√2ab=a^2+b^2-c^2>=2ab-2R^2
(2-√2)ab
推荐
- 在三角形ABC的外接圆半径为R,且2R(sin^2A-sin^2C)=(根号2倍a-b)sinB,求三角形ABC面积的最大值.(快...
- 若三角形ABC内接于半径为R的圆,且2R(sin^2A-sin^2C)=(根号2a-b)sinB,求三角形的最大面积?
- 半径为R的圆外接与三角形ABC 且2R(sin^2A-sin^2c)=(根号3*a-b)sinB求角C和△abc的面积最大值
- 已知园O的半径为R,它的内接三角形△ABC中,2R(sin^2A+sin^2C)=((根号2)a-b)*sinB,求△ABC面积S的最大值
- 半径为R的圆外接与三角形ABC 且2R(sin^2A-sin^2c)=(根号3*a-b)sinB求角C
- 怎么解初中数学动态问题
- 当物质发生化学变化时,分子变了,变成新的分子,然后 再重新组合成新的 构成新的物质.可见,
- 把一元二次不等式转化成与之等价的一元一次不等式组
猜你喜欢