求两条直线l1:4x-3y+1=0和l2:12x+5Y+13=0所成交的角平分线方程
人气:172 ℃ 时间:2020-04-10 13:48:28
解答
先求交点
{4x-3y+1=0,12x+5y+13=0
解得x=-11/14,y=-5/7
再求平分线斜率,设为k
则(利用两直线的夹角公式tanθ=|(k2-k1)/(1+k1*k2)|)
|(4/3-k)/(1+4k/3)|=|(-12/5-k)/(1-12k/5)|
解得k=8或k=-1/8
所以角平分线方程是y+5/7=8(x+11/14)或y+5/7=(-1/8)*(x+11/14)
即56x-7y+39=0或14x+112y+91=0
推荐
猜你喜欢
- 如图,AD是△ABC的角平分线,DE//AC交AB于E点,DF//AB交AC于F点,四边形AEDF是菱形吗?
- 对于三个数a,b,c,M{a,b,c}表示三个平均数,min{a,b,c}表示a,b,c这三个数的最小数 1,min{100,101,10}=
- 用mathlab画 y=sin(t*cos(t)/(cos(t)+1)函数图象,t的范围是0到2*pi.
- 在铭牌上标有“100欧,9瓦”和“100欧,25瓦”的两个电阻串联时,允许所加的最大电压是多少?
- 走一步再走一步最后一段的中心句是什么?
- 如图四边形abcd是菱形,f是ab上一点df交ac于e求证角afd=角cbe
- 求方程xy-2x-2y+7的整数解
- 八年级数学选择题,在线等