数列an是等差数列,Sn是它的前n项和,且a3=5,S3=9,
(1) 求首项a1和公差d及Sn
(2) 若存在数列bn使得a1b1+a2b2+……+anbn=5+(2n-3)2^(n-1),对任意正整数n都成立,求数列bn的钱n项和An
人气:225 ℃ 时间:2019-10-26 06:08:04
解答
(1).由已知:a3=a1+2d=5,S3=a1+a2+a3=2a1+d+5=9,即2a1+d=4,上述两式联立可得:a1=1,d=2.所以:an=a1+(n-1)d=1+(n-1)*2=2n-1.Sn=(a1+an)n/2=(1+2n-1)n/2=n^2.
(2).由题意,n=1时,a1b1=5+(2*1-3)2^(0)=5+(-1)=4,b1=4/a1=4;
a1b1+a2b2+……+anbn=5+(2n-3)2^(n-1),
a1b1+a2b2+……+an-1bn-1=5+(2n-5)2^(n-2),【注:n=n-1时】
上述两式相减得:anbn=(2n-3)2^(n-1)-(2n-5)2^(n-2)=(2n-1)2^(n-2).
而an=2n-1,可见bn=2^(n-2),而b1=4不符合上式,所以bn是一个除首项外,以第二项b2=1为首项,2为公比的等比数列.其前n项和:
An=b1+b2+...+bn=4+1+2+2^2+...+2^(n-2)=4+(1-2^(n-1))/(1-2)=2^(n-1)+3.
推荐
- 已知正项等差数列an的前n项和为sn,若s3=12,2a1,a2,a3+1成等比数列.求an 及bn=an/3^n 的前n项和Tn
- 已知等差数列an前n项和为Sn,且a3=11,S3=24.求an通项公式.
- 已知数列{An}是等差数列前n项和Sn,A3=6,S3=12.
- 设等差数列{an}的前n项和为sn,已知a3=5,s3=9
- 已知等差数列{an}中,a3=13,s3=21,求数列{Sn/n}的前n项和.
- 【跪求】已知一个平面的法向量,和经过的两点,怎么求这个平面的方程?
- 2千克的5分之2和( )个5分之2千克相等 ( )的9分之1和1米的9分之4一样长.
- 计算:1×2+2×3+3×4+4×5+5×6+6×7+7×8+8×9=_.
猜你喜欢