已知tana=2,tanβ=3,a、β均为锐角,求证 a+β=135°
人气:364 ℃ 时间:2020-05-06 19:42:31
解答
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
=(2+3)/(1-2*3)
=-1
又因为a、β均为锐角
所以a+β=135°
推荐
- 已知A、B是锐角,求证(tan(π+A)+tan(-B))/(1/tan(3π-A)+tan(π/2-B))=tanA*tanB
- 已知tana=1/3,tanβ=2,tanr=3/4且a,β,r是锐角求证a+β-r=π/4
- 已知tana=7,tanβ=1/2,a、β均为锐角,求a+2β的值.
- 已知a为锐角,当1-tana分之2无意义时,求tan(a+15°)-tan(a-15°)的值
- 设tana=1/7,tanβ=1/3,且a,β都是锐角,求证:a+2β=π/4
- Everyone needs ____(have)at least eight hours' sleep a night.有讲解
- 已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F. (1)求证:△BCG≌△DCE; (2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四
- (X+5)+(X-2)=67 求X
猜你喜欢