> 数学 >
设n为大于1的正整数,证明:存在从小到大排列后成等差数列的n个正整数,它们中任意两项互质.
人气:130 ℃ 时间:2020-04-25 15:59:26
解答
设这n个数为a1, a2, a3 ... an
取am = (m - 1) × n! + 1 (1 ≤ m ≤ n)
那么数列 {am} 是首项为1,公差为 n! 的等差数列
其中任意两个数 ap, aq (1 ≤ p < q ≤ n)的最大公约数
(ap, aq) = (aq - ap, ap) = ( (q - p) × n!,ap)
∵q - p < n
∴(q - p) × n! 的质因数 均 小于等于n
而ap除以任意一个小于等于n的数都余1
也就是说,(q - p) × n! 的所有质因数,没有一个会是ap的质因数
因此 (q - p) × n! 和 ap 互质
即(ap, aq) =( (q - p) × n!,ap) = 1
即ap,aq互质

因此,对于任意正整数n,存在n项等差正整数列,它们中的项两两互质
证毕.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版