> 数学 >
如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5
OC=6根号2   则另一直角边BC的长为
人气:139 ℃ 时间:2020-07-18 10:28:12
解答
解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,
∵四边形ABDE为正方形,
∴∠AOB=90°,OA=OB,
∴∠AOM+∠BOF=90°,
又∠AMO=90°,∴∠AOM+∠OAM=90°,
∴∠BOF=∠OAM,
在△AOM和△BOF中,
∠AMO=∠OFB=90°∠OAM=∠BOFOA=OB,
∴△AOM≌△BOF(AAS),
∴AM=OF,OM=FB,
又∠ACB=∠AMF=∠CFM=90°,
∴四边形ACFM为矩形,
∴AM=CF,AC=MF=5,
∴OF=CF,
∴△OCF为等腰直角三角形,
∵OC=6根号2,
∴根据勾股定理得:CF2+OF2=OC2,
解得:CF=OF=6,
∴FB=OM=OF-FM=6-5=1,
则BC=CF+BF=6+1=7.
故答案为:7.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版