∴顶点坐标为(a,a2+b),
代入mx-y-2m+1=0中,得ma-(a2+b)-2m+1=0,
即b=ma-a2-2m+1,
联立
|
解得-2x2+2ax+b=0,
∵两抛物线有公共点,
∴△=(2a)2-4×(-2)×b≥0,
即a2+2b≥0,
a2+2(ma-a2-2m+1)≥0,
整理,得2(a-2)m≥a2-2,
当a=2时,无解,
当a>2时,
m≥
| a2-2 |
| 2(a-2) |
| 1 |
| 2 |
| 2 |
| a-2 |
| 2 |
| 2 |
当a<2时,
m≤
| a2-2 |
| 2a-4 |
| 1 |
| 2 |
| 2 |
| a-2 |
| 2 |
| 2 |
|
| a2-2 |
| 2(a-2) |
| 1 |
| 2 |
| 2 |
| a-2 |
| 2 |
| 2 |
| a2-2 |
| 2a-4 |
| 1 |
| 2 |
| 2 |
| a-2 |
| 2 |
| 2 |